Abstract

Lysogenization of mycobacteriophage L5 involves integration of the phage genome into the Mycobacterium smegmatis chromosome. Integration occurs by a site-specific recombination event between a phage attachment site, attP, and a bacterial attachment site, attB, which is catalyzed by the phage-encoded integrase protein. DNase I footprinting reveals that L5 integrase binds to two types of sites within attP which span an unexpectedly large region of 413 bp: seven arm-type sites (P1 to P7) each of which correspond to a consensus sequence 5′-TGCaaCtcYy, and core-type sites at the points of strand exchange. Mutational analyses indicate that not all of the arm-type sites are required for integration, and that the P3 site and the rightmost pair of sites (P6 and P7) are dispensable for integration. We show that a 252 bp segment of attP DNA is sufficient for efficient integrative recombination and that int can be provided in trans for simple and efficient transformation of the mycobacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call