Abstract

New geologic mapping, morphologic fault scarp modeling, and geomorphic metrics in the Red Rock Valley, southwestern Montana, help characterize the Quaternary history of the virtually unstudied Monument Hill fault and tectonics of the youthful and seismically active Red Rock graben. Two generations of Pleistocene surface ruptures are preserved along the Monument Hill fault. Similarity in rupture ages along multiple strands, determined from offset alluvial surfaces and morphologic modeling, suggest earthquake clusters at 22–32 ka and possibly >160 ka. Quaternary activity along the Monument Hill fault is also reflected in elongate drainage basins and channel profiles with anomalously steep reaches coincident with mapped faults. An anticlinal accommodation zone at Kidd accommodates a change in fault polarity between the en echelon Monument Hill and Red Rock faults and a northward decrease in extension within the Red Rock graben. The unique rupture histories of the Monument Hill and Red Rock faults, however, suggest the systems are not seismogenically linked and that the accommodation zone serves as a rupture barrier. The geometry, interconnectivity, and kinematics of faults in the Red Rock Valley may represent a snapshot of the early stages of extension applicable to the evolution of other Northern Basin and Range grabens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.