Abstract

B cell activating factor (BAFF), a member of the tumor necrosis factor family, is critical to B cell survival, proliferation, maturation, and immunoglobulin secretion and to T cell activation. In the present study, the full-length cDNA of BAFF from the South African clawed frog (Xenopus laevis, designated xlBAFF) was cloned using rapid amplification of cDNA ends (RACE) techniques and RT-PCR. The full-length cDNA of xlBAFF consists of 1204 bases including an open reading frame (ORF) of 801 nucleotides that are translated into a predicted 266 amino acid protein. Sequence comparison indicated that the amino acids of xlBAFF possessed the TNF signature, including a transmembrane domain, a putative furin protease cleavage site and three cysteine residues. The predicted three-dimensional (3D) structure of the xlBAFF monomer revealed that it was very similar to its counterparts. Real-time quantitative PCR analysis revealed that xlBAFF could be detected in various tissues and predominantly expressed in the spleen and other lymphoid tissue. The soluble xlBAFF had been cloned into a pET28a vector to express the recombinant protein. The His6-xlBAFF was efficiently expressed in Escherichia coli. BL21 (DE3) and its expressions were confirmed by SDS-PAGE and Western blotting analysis. After purification, laser scanning confocal microscopy analysis showed that xlBAFF could bind to its receptors on B cells. CCK-8 assays revealed that xlBAFF is not only able to promote survival/proliferation of South African clawed frog lymphocytes but also able to stimulate survival/proliferation of mouse B cells. These results will allow for further investigation the use of X. laevis as an in vivo model for related studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call