Abstract

The best characterized form of resistance is gene-for-gene resistance. Less well characterized is nonhost resistance in which an entire plant species is resistant to an entire pathogen species. Here, different rice genotypes were inoculated with host and nonhost strains of Magnaporthe isolated from rice, wheat and crabgrass. The different types of interactions were characterized at a cytological level using a 3,3'-diaminobenzidine (DAB) stain to investigate the occurrence of reactive oxygen intermediates or by observing the occurrence of cellular autofluorescence. Gene expression of a set of selected PR-genes was analysed using quantitative real-time polymerase chain reaction. Inoculation with the isolate from crabgrass resulted in a lack of penetration. The wheat isolate induced a hypersensitive response with varying degrees of pathogen growth inside the invaded cell according to the rice genotype. Expression analysis of our PR-gene set revealed clear differences between the different types of interactions in both kinetic and magnitude of gene induction. Our integrated study opens the way to the dissection of molecular components leading to nonhost reactions to Magnaporthe grisea in rice and points to novel sources of durable resistance to fungal plant pathogens in other cereal crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.