Abstract

Sphaeropleales have the characteristics of rapid growth, high oil content, and efficient removal rates of nitrogen and phosphorus in sewage waters, and is potentially valuable in biodiesel production and environmental remediation. In this study, we isolated a strain of Sphaeropleales, Chlorolobion braunii strain ITBB-AG6 from an azolla community in a sewage pond. Its mitochondrial genome contains 110,124 bp and harbors at least 40 genes, including 15 protein-coding genes, 20 tRNA genes, and three rRNA genes. The protein-coding genes include two for ATP synthases, seven for NAD(P)H-quinone oxidoreductases (nad), three for cytochrome c oxidase subunits (coxs), and one for cytochrome b (cob). Transfer RNA genes for 18 amino acids were identified, in which the tRNA genes for leucine and serine are doubled, but the tRNA genes for threonine and valine are not annotated. Phylogenetic analysis using the mitochondrial genomes of seven families of Sphaeropleales indicated that ITBB-AG6 is closely related to Monoraphidium neglectum, and falls in the family Selenastraceae with 100% bootstrap support. Two species in the family Neochloridaceae are separated by a species in Hydrodictyaceae, indicating a polyphyletic nature. These findings revealed the complicated phylogenetic relationships of the Sphaeropleales and the necessity of genome sequences in the taxonomy of microalgae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call