Abstract
Rainfall is the main cause of erosion damage in loose slope deposits. During rainfall infiltration, fine particles in the soil mass will move with water infiltration, thus changing the localized particle distribution of the soil mass, which, in turn, causes changes in the pore water pressure and volumetric water content within the slope and ultimately affects slope stability. In order to develop advanced soil and water conservation programs to prevent slope damage, it is crucial to understand and accurately reproduce the particle migration and aggregation characteristics of soils under different rainfall conditions. Therefore, this paper systematically investigates the soil particle migration characteristics of the soil body under rainfall conditions by simulating the internal erosion of the lateritic soil slope body under rainfall conditions via slope internal erosion simulation experiments and experimentally analyzing the migration and aggregation of fine particles in the slope body, as well as the changed rules regarding pore water pressure and volumetric water content at different locations of the slope body with rainfall. The results of this study show that (1) with the infiltration of rainfall, the fine particles in the slope body mainly infiltrate in the vertical direction in an early stage of rainfall; in a later stage, there is vertical downward and down-slope seepage. Therefore, fine particles always gather at the toe of the slope, which leads to relatively high water content and pore water pressure at the toe of the slope, and thus, the slope is always damaged from the toe of the slope. (2) Inside the slope, the fine particles always gather at the smallest pore diameter. With the enhancement of hydrodynamic force, they will be lost again, which leads to a sudden decrease in the local volumetric water content of the slope, and the pore space increases. Then, it is filled with seepage water, which makes the pore water pressure fluctuate or increase. (3) Based on the particle distribution parameter, the present study produced a distribution map of the fine particle content of the slope body under different rainfall intensities and established a model of the dynamic change of fine particles, which improves the understanding of the effect of the change in the fine particle composition of the slope body on the water content and the pore water pressure and may be helpful for the assessment of the initiation of the mudslides.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.