Abstract

An AlN composite ceramic layer was designed and fabricated on WCu substrates by hydrolysis-assisted solidification and firing. First, the surface of WCu substrates were pre-coated with polycarbosilane/AlN ceramic layers by spinning; the layers were then fabricated by firing. The phase composition, microstructure, and element distribution of the ceramic layer and interfacial reaction layer were investigated by use of scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The results showed that the ceramic layers were composed of AlN, mullite, and Al2O3. There were many nanocrystalline rods on the surface of the ceramic layers. The Cr layer prevented the WCu substrate from reacting with water vapor during firing, and the Ni layer prevented diffusion of tungsten into the Cr layer. Study of the cross section of the ceramic layer fired on the Cr/Ni/WCu substrate revealed a perfect interfacial reaction layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.