Abstract

Understanding the effects of wheel-rail contact on the microstructure of rails is an important issue for railway management. The impact of wheel-rail contact and surface preparation on the microstructure of rails is studied using a rolling contact bench. Microstructure changes are characterized by coupling microhardness measurements and scanning electron microscopy combined with electron backscattering diffraction. This analysis led to a complete description of the sub-surface microstructure in link with the contact conditions. It was found that the use of a corroded layer on the material surface led to a considerable strain-hardening decrease. Lower surface strain-hardening was also found for sliding conditions compared to pure rolling conditions. EBSD characterizations using different indicators highlighted the importance of the scale of investigation: the use of Kernel Average Misorientation led to the identification of larger impacted depths than the Inverse Pole Figures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call