Abstract

Although the main nodes of the neuronal network that regulate paradoxical sleep (PS), also called rapid eye movement sleep, have been identified in rodents, it still needs to be more thoroughly described. We have recently shown that 58% of a hypothalamic neuronal population, the melanin-concentrating hormone (MCH) neurons, are activated after a PS hypersomnia and that MCH, when injected intracerebroventricularly, induces a dose-dependent increase in PS. This suggests that MCH plays a role in PS regulation. Two subpopulations of MCH neurons have been distinguished neurochemically, one that coexpresses cocaine and amphetamine-regulated transcript (CART) and sends ascending projections to the septum and the hippocampus, the other, the non-CART MCH neurons, send descending projections to the lower brainstem and the spinal cord. In order to better characterize the PS-activated MCH neurons it is interesting to determine whether they belong to the first, the second, or both subgroups. We therefore undertook an MCH, CART, and Fos triple immunolabeling study in PS hypersomniac rats. We showed that the MCH neurons activated during PS are part of both subpopulations since we found CART and non-CART MCH-activated neurons. Based on these results and the literature, we propose that MCH could be involved in memory processes and in the inhibition of muscle tone during PS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call