Abstract

The use of dental composites based on dimethacrylates that have quaternary ammonium groups is a promising solution in the field of antibacterial restorative materials. This study aimed to investigate the mechanical properties and behaviors in aqueous environments of a series of six copolymers (QA:TEG) comprising 60 wt.% quaternary ammonium urethane-dimethacrylate (QAUDMA) and 40 wt.% triethylene glycol dimethacrylate (TEGDMA); these copolymers are analogous to a common dental copolymer (BG:TEG), which comprises 60 wt.% bisphenol A glycerolate dimethacrylate (Bis-GMA) and 40 wt.% TEGDMA. Hardness (HB), flexural strength (FS), flexural modulus (E), water sorption (WS), and water solubility (SL) were assessed for this purpose. The pilot study of these copolymers showed that they have high antibacterial activity and good physicochemical properties. This paper revealed that QA:TEGs cannot replace BG:TEG due to their insufficient mechanical properties and poor behavior in water. However, the results can help to explain how QAUDMA-based materials work, and how their composition should be manipulated to produce the best performance. It was found that the longer the N-alkyl chain, the lower the HB, WS, and SL. The FS and E increased with the lengthening of the N-alkyl chain from eight to ten carbon atoms. Its further extension, to eighteen carbon atoms, caused a decrease in those parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.