Abstract

Cellular processes, such as cell migration, adhesion, and proliferation depend on the interaction between the intracellular environment and the extracellular matrix (ECM). While many studies have explored the role of the microenvironment on cell behavior, the influence of 3D matrix mechanics on intracellular activity is not completely understood. To characterize the relationship between the mechanical components of the microenvironment and intracellular behavior, we use particle-tracking microrheology of metastatic breast cancer cells embedded in 3D collagen gels to quantify the intracellular activity from which the molecular motor activity and stiffness can be determined. Our results show that increasing collagen concentration of the 3D environments leads to an increase in intracellular stiffness and motor activity. Furthermore, our studies demonstrate that intracellular fluctuations depend on collagen concentration, even in the presence of a number of frontline chemotherapeutic and anti-MMP drugs, indicating that ECM concentration is an important and indispensable parameter to consider in drug screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.