Abstract

Malaria is one of the most common infective diseases in the world. Invasion of host erythrocytes by the malaria parasite is crucial for pathogen survival and pathogenesis. Various proteins mediate parasite invasion and identification of novel invasion-related proteins may aid in elucidating the underlying molecular mechanism and new intervention strategies for malaria control. This study characterized the PfTip protein, a homolog of the human T‑cell immunomodulatory protein, and examined its function in preventing parasite infection. Bioinformatics analysis and experimental validation were adopted in the present study. Bioinformatics analysis showed that PfTip has a β‑propeller fold in its structure and is highly expressed at the early ring stage. TNFRSF14 was predicted to be a candidate interactant of PfTip. Further analyses showed that PfTip blockage by sera inhibited erythrocyte invasion by the malaria parasite. The protective effect of PfTip was further confirmed through in vivo analysis. To the best of our knowledge, this study is the first to provide evidence on the function of PfTip in erythrocyte parasite invasion. Additional assays involving the receptor of this protein are currently underway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.