Abstract

Tamoxifen is hepatocarcinogenic in rats and has been associated with an increased risk of endometrial cancer in women. Recent reports suggest that it may be genotoxic in humans. N-Desmethyltamoxifen is a major tamoxifen metabolite that has been proposed to be responsible for one of the major adducts detected in liver DNA of rats treated with tamoxifen. The metabolic activation of N-desmethyltamoxifen to DNA binding products may involve oxidation to alpha-hydroxy-N-desmethyltamoxifen followed by esterification. In the study presented here, we report the synthesis of alpha-hydroxy-N-desmethyltamoxifen and the characterization of the major adduct obtained from alpha-sulfoxy-N-desmethyltamoxifen in vitro as (E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen. In addition, we use (32)P-postlabeling in combination with HPLC to compare the adducts formed in the livers of female Sprague-Dawley rats treated by gavage with tamoxifen or equimolar doses of alpha-hydroxy-N-desmethyltamoxifen. We conclude that one of the major adducts formed in vivo and previously suggested to derive from N-desmethyltamoxifen is chromatographically identical to alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call