Abstract
Environmental factors, including nutritional habits or birth mode, are known key determinants for intestinal microbial composition. Investigations of the intestinal microbiome in different species in a multiplicity of studies during recent decades have revealed differential microbial patterns and quantities along the gastrointestinal (GI) tract. Characterization of the microbial pattern in various aspects is a prerequisite for nutritional interventions. In this 16S rRNA amplicon-based approach, we present a characterization of the mucosa-associated microbiome in comparison with the luminal community of four infants at the time of the closure of ileostomies and perform a systematic characterization of the corresponding luminal and mucosal microbiome from jejunal, ileal and colonic regions, as well as collected feces in mice. The most dominant taxa in infant-derived samples altered due to individual differences, and in the mucosa, Enterococcus, Clostridium sensu stricto 1, Veillonella, Streptococcus and Staphylococcus were the most abundant. Two less abundant taxa differed significantly between the mucosa and lumen. In murine samples, relative abundances differed significantly, mainly between the intestinal regions. Significant differences between mouse mucosa- and lumen-derived samples could be found in the observed species with a trend to lower estimated diversity in mucosa-derived samples, as well as in the relative abundance of individual taxa. In this study, we examined the difference between the mucosal and luminal bacterial colonization of the gastrointestinal tract in a small sample cohort of preterm infants. Individual differences were characterized and statistical significance was reached in two taxa (Cupriavidus, Ralstonia). The corresponding study on the different murine intestinal regions along the GI tract showed differences all over the intestinal region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.