Abstract

Vibrio vulnificus is a marine pathogenic bacterium commonly found in seawater or seafood. This organism encounters low-salinity stress in its natural environment and during food processing. This study was designed to investigate the response of V. vulnificus YJ03 to lethal low salinity (0.04% NaCl) and its adaptation to sublethal salinity (0.12% NaCl with 20 amino acids added). A short period in the nonculturable state was induced by lethal low-salinity stress followed by cell death after 30 min of stress. Addition of 1mM glycine betaine or 0.5mM sucrose reduced the damage. Low-salinity adaptation was achieved in the exponential-phase cells but not in the stationary-phase cells. Significant protection against lethal low-salinity stress was attained when the cells were adapted for as little as 1.5 min. The adapted cells were significantly protected against lethal low salinity and 2.4% sodium sorbate but sensitized to the challenge of heat (52°C) and acid (pH 3.2). Nonlethal lowsalinity treatment of seafood should be avoided to prevent stress adaptation of V. vulnificus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.