Abstract

Ti-MCM-41 mesoporous molecular sieves were prepared at ambient temperature and were characterized by X-ray absorption near-edge structure and extended X-ray absorption fine structure, UV-vis, Fourier transform infrared spectroscopy, and photoluminescence spectroscopic analyses. It was found that an increase in the Ti content caused the structure of the Ti-oxides in Ti-MCM-41 to change from an isolated tetrahedral coordination to adjacent Ti-oxide species with Ti4+ of tetrahedral coordination. The photocatalytic reactivity of these catalysts for the decomposition of NO into N2 and O2 was found to strongly depend on the local structure of the Ti-oxide species including their coordination and distribution, i.e., the charge transfer excited state of the highly dispersed isolated tetrahedrally coordinated Ti-oxides act as the active sites for the photocatalytic decomposition of NO into N2 and O2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.