Abstract

Arachidonoylethanolamide or ‘anandamide’ is a naturally occurring derivative of arachidonic acid that has been shown to activate cannabinoid receptors in the brain. Its metabolic inactivation by brain tissue has been investigated. Anandamide is hydrolyzed by the membrane fraction of rat brain homogenate to arachidonic acid and ethanolamine. The hydrolysis is temperature and pH- dependent (pH maximum at 8.5) and abolished by boiling. Anandamide hydrolysis is protein dependent in the range of 25–100 μg protein/ml; does not require calcium and is inhibited by phenylmethylsulfonylfluofde, diisopropylfluorophosphate, thimerosal and arachidonic acid. Hydrolysis of 10 μM anandamide by brain membranes follows first order kinetics; at 30°C, the rate constant for anandamide catabolism is 0.34 min −1 mg protein −1. The K m for anandamide hydrolysis is 3.4 μM, and the V max is 2.2 nmol/min per mg protein. Hydrolysis occurs in all subcellular fractions except cytosol with the highest specific activity in myelin and microsomes. The distribution of anandamide hydrolytic activity correlates with the distribution of cannabinoid receptor-binding sites; the hippocampus, cerebellum and cerebral cortex exhibit the highest metabolic activity, while activity is lowest in the striatum, brain stem and white matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.