Abstract
In sedimentation velocity experiments, we have been able to detect hybrid Rhizobium etli pyruvate carboxylase tetramers formed between subunits that contain covalently bound biotin and mutant subunits that do not. This was performed by forming complexes of the tetramers with the biotin-binding protein avidin. In addition, we have shown that it is possible to form hybrid tetramers of pyruvate carboxylase subunits from two different organisms (bacteria - Rhizobium etli and fungi – Aspergillus nidulans). In hybrid tetramers containing mutant subunits that are not fully catalytically active and fully catalytically active subunits, the catalytic and regulatory properties of these hybrid tetramers are modified compared to homotetramers of the fully active pyruvate carboxylase subunits. Our data indicates that the model of catalysis involving half-of-the-sites activity in which there is obligatory alternation of pyruvate carboxylating activity between pairs of subunits either face of the tetramer, does not occur in the hybrid tetramers. Our results are also discussed in relation to recent findings that there are multiple pathways of biotin carboxylation and decarboxylation between subunits in pyruvate carboxylase tetramers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.