Abstract

The kallikrein–kinin system (KKS) has been described as an important mediator of physiologic processes. Kallikreins use kininogen (KNG) as substrate to generate bradykinin, the main active peptide of the KKS that acts through two types of receptors, the B1R and the B2R. The goal of this study was to characterize some components of the KKS in different compartments of the ovary during the bovine ovulation process. The KNG, B1R and B2R mRNA expression patterns were assessed in theca and granulosa cells, as well as the bradykinin concentration and kallikrein-like activity in follicular fluid of bovine periovulatory follicles. To obtain a periovulatory follicle (≥12mm), twenty-seven cows were submitted to estrus synchronization protocol and ovariectomized by colpotomy at 0, 3, 6, 12 or 24h after a GnRH-analog injection (gonadorelin; 100μg, IM). Follicular fluid was aspirated for enzymatic assays while granulosa and theca cells were harvested for mRNA analysis. The mRNA expressions in follicular cells were evaluated by real-time RT-PCR and data representation related to the cyclophilin housekeeping gene. The bradykinin concentration and kallikrein-like activity were measured in follicular fluid by enzymatic immunoassay and selective substrate cleavage, respectively. The B2R expression in theca cells and B1R expression in theca and granulosa cells showed different profiles during the periovulatory period (P<0.05). The bradykinin concentration and kallikrein-like activity in the follicular fluid were different (P<0.05) due to the time during the ovulation process. KNG mRNA expression was similar for both follicular cell types (P>0.05). Taken together, these results provide an important characterization of the presence and possible KKS regulation during the bovine ovulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.