Abstract

Isocitrate dehydrogenase (IDH) is a key rate-limiting enzyme in the tricarboxylic acid cycle and acts in glutamine synthesis. IDH also participates in plant growth and development and in response to abiotic stresses. We identified 11 maize IDH genes (ZmIDH) and classified these genes into ZmNAD-IDH and ZmNADP-IDH groups based on their different coenzymes (NAD+ or NADP+). The ZmNAD-IDH group was further divided into two subgroups according to their catalytic and non-catalytic subunits, as in Arabidopsis. The ZmIDHs significantly differed in physicochemical properties, gene structure, conserved motifs, and protein tertiary structure. Promoter prediction analysis revealed that the promoters of these ZmIDHs contain cis-acting elements associated with light response, abscisic acid, phytohormones, and abiotic stresses. ZmIDH is predicted to interact with proteins involved in development and stress resistance. Expression analysis of public data revealed that most ZmIDHs are specifically expressed in anthers. Different types of ZmIDHs responded to abiotic stresses with different expression patterns, but all exhibited responses to abiotic stresses to some extent. In addition, analysis of the public sequence from transcription data in an association panel suggested that natural variation in ZmIDH1.4 will be associated with drought tolerance in maize. These results suggested that ZmIDHs respond differently and/or redundantly to abiotic stresses during plant growth and development, and this analysis provides a foundation to understand how ZmIDHs respond to drought stress in maize.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.