Abstract

Hyperactivated sperm motility is usually characterized by high-amplitude flagellar bends and asymmetrical flagellar beating. There is evidence that an inositol 1,4,5-trisphosphate (IP3) receptor-gated Ca2+ store in the base of the flagellum provides Ca2+ to initiate hyperactivation; however, the identity of the store was not known. Ca2+ stores are membrane-bounded organelles, and the only two membrane-bounded organelles found in this region of sperm are the redundant nuclear envelope (RNE) and mitochondria. Transmission electron micrographs revealed two different compartments of RNE, one enriched with nuclear pores and the other containing few pores but extensive membranous structures with enlarged cisternae. Immunolabeling showed that IP3 receptors and calreticulin are located in the region containing enlarged cisternae. In other cell types, mitochondria adjacent to Ca2+ stores are actively involved in modulating Ca2+ signals by taking up Ca2+ released from stores and also may respond by increasing production of NADH and ATP to support increased energy demand. Nevertheless, bull sperm did not show an increase in NADH when Ca2+ was released from intracellular stores by thapsigargin to induce hyperactivation. Consistently, no net increase in ATP production was detected when sperm were hyperactivated, although ATP was hydrolyzed at a greater rate. Furthermore, blocking Ca2+ efflux from mitochondria by CGP-37157, a specific inhibitor of the mitochondrial Na+/Ca2+ exchanger, did not inhibit the development of hyperactivated motility. We concluded that the intracellular Ca2+ store is the part of RNE that contains enlarged cisternae and that Ca2+ is released directly to the axoneme to trigger hyperactivated motility without the active participation of mitochondria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.