Abstract

High-throughput 16S rRNA gene sequencing has been used to identify the intestinal microbiota of many animal species, but that of marine invertebrate organisms remains largely unknown. There are only a few high-throughput sequencing studies on the intestinal microbiota of echinoderms (non-vertebrate Deuterostomes). Here we describe the intestinal microbiota of the sea cucumber Holothuria glaberrima, an echinoderm, well-known for its remarkable power of regeneration. We characterized the microbiota from the anterior descending intestine, the medial intestine (these two comprise the small intestine) and the posterior descending intestine (or large intestine), using pyrosequencing to sequence the V4 region of the 16S rRNA gene. We compared animals in their natural marine environment and in sea-water aquaria. A total of 8,172 OTU’s were grouped in 10 bacterial phyla, 23 classes, 44 orders, 83 families, 127 genera and 1 group of unknown bacteria, present across the digestive tract of 10 specimens. The results showed that the anterior intestine is dominated by Proteobacteria (61%) and Bacteroidetes (22%), the medium intestine is similar but with lower Bacteroidetes (4%), and the posterior intestine was remarkably different, dominated by Firmicutes (48%) and Bacteroidetes (35%). The structure of the community changed in animals kept in aquaria, which had a general dominance of Firmicutes and Bacteroidetes, regardless the intestinal segment. Our results evidence that in the natural sea environment, there is intestinal segment differentiation in the microbiota of H. glaberrima, which is lost in artificial conditions. This is relevant for physiological studies, such as mechanisms of digestive regeneration, which might be affected by the microbiota.

Highlights

  • The microbiome refers to the genome of microbial life forms inhabiting a living host, and their interactions with the host [1]

  • The OTU classification was done using the RDP-classifier and we obtained 10 bacterial phyla, 23 classes, 44 orders, 83 families and 127 genera, that were present along the sea cucumber digestive tract

  • In accordance to many other studies where 16S data is used to determine microbial diversity, the number of genera identified by our study is much larger than the ~20 genera that have been identified in the digestive tract of several holothurian species using culture-dependent methods [38, 49]

Read more

Summary

Introduction

The microbiome refers to the genome of microbial life forms inhabiting a living host, and their interactions with the host [1]. The term was first suggested by Joshua Lederberg to describe the collective genome of our indigenous microbes and to introduce the idea that a genetic view of humans should include the microbial genes [2].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call