Abstract

ABSTRACTMedium-k dielectric Y2O3 films were directly grown on (100) Si substrates by the pulsed laser deposition (PLD) technique. X-ray photoelectron spectroscopy, variable angle spectroscopic ellipsometry, current-voltage, capacitance-voltage, and high-resolution transmission electron microscopy were used to investigate the composition, thickness, and electrical properties of the grown structures. It has been found that at the interface between the Si substrate and the grown dielectric layer, a SiOx interfacial layer, whose thickness depended on the oxygen pressure used during the PLD growth, was always formed. The main oxygen source for this interfacial layer formation is the physisorbed oxygen trapped inside the grown layer during the laser ablation-deposition process. When trying to reduce the thickness of this low-k interfacial layer by decreasing the oxygen pressure during laser ablation, a marked degradation of the electrical properties of the structures was noticed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.