Abstract

C-Src kinase is localized in several subcellular compartments, including mitochondria where it is involved in the regulation of organelle functions and overall metabolism. Surprisingly, the characterization of the intramitochondrial Src interactome has never been fully determined. Using in vitro proximity-dependent biotin identification (BioID) coupled to mass spectrometry, we identified 51 candidate proteins that may interact directly or indirectly with c-Src within the mitochondrial matrix. Pathway analysis suggests that these proteins are involved in a large array of mitochondrial functions such as protein folding and import, mitochondrial organization and transport, oxidative phosphorylation, tricarboxylic acid cycle and metabolism of amino and fatty acids. Among these proteins, we identified 24 tyrosine phosphorylation sites in 17 mitochondrial proteins (AKAP1, VDAC1, VDAC2, VDAC3, LonP1, Hsp90, SLP2, PHB2, MIC60, UBA1, EF-Tu, LRPPRC, ACO2, OAT, ACAT1, ETFβ and ATP5β) as potential substrates for intramitochondrial Src using in silico prediction of tyrosine phospho-sites. Interaction of c-Src with SLP2 and ATP5β was confirmed using coimmunoprecipitation. This study suggests that the intramitochondrial Src could target several proteins and regulate different mitochondrial functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call