Abstract

The interaction of nitrofurazone (NF) and human serum albumin (HSA) has been studied by fluorescence spectroscopy, FT-IR spectroscopy and molecular modeling methods. The results showed that the fluorescence of HSA was quenched by NF in a static quenching mechanism. Thermodynamic parameters revealed that hydrogen bonds and van der Waals force played the major role during the interaction. The calculated binding distance (r) indicated that the non-radioactive energy transfer came into being in the interaction between NF and HSA. HSA had a single class of binding site at Sudlow' site I in subdomain IIA for NF, which was verified by the displacement experiment. The molecular modeling study further confirmed the specific binding sites of NF on HSA, such as the interaction between N11 and N14 of NF with Lue 283 and Ser 287 predominately through hydrogen bonds. Three-dimensional fluorescence spectra indicated that the polarity around the tryptophan residues decreased and the conformation of HSA changed after adding NF. FT-IR spectra showed that NF could induce the polypeptides of HSA unfolding because it changed α-helix and β-sheet into β-turn and random structure of HSA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.