Abstract
We have identified and characterized two Imitation Switch genes in Saccharomyces cerevisiae, ISW1 and ISW2, which are highly related to Drosophila ISWI, encoding the putative ATPase subunit of three ATP-dependent chromatin remodeling factors. Purification of ISW1p reveals a four-subunit complex with nucleosome-stimulated ATPase activity, as well as ATP-dependent nucleosome disruption and spacing activities. Purification of ISW2p reveals a two-subunit complex also with nucleosome-stimulated ATPase and ATP-dependent nucleosome spacing activities but no detectable nucleosome disruption activity. Null mutations of ISW1, ISW2, and CHD1 genes cause synthetic lethality in various stress conditions in yeast cells, revealing the first in vivo functions of the ISWI subfamily of chromatin-remodeling complexes and demonstrating their genetic interactions. A single point mutation within the ATPase domain of both ISW1p and ISW2p inactivated all ATP-dependent biochemical activities of the complexes, as well as the ability of the genes to rescue the mutant phenotypes. This demonstrates that the ATP-dependent chromatin-remodeling activities are essential for the in vivo functions of both ISW1 and ISW2 complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.