Abstract

OH stretching vibrations of hydrogen-bonded cluster ions of phenol (PhOH), [PhOH−(H2O)n]+ (n = 1−4), (PhOH)2+, and (PhOH−methanol)+ have been observed with infrared photodissociation spectroscopy in combination with an ion-trapping technique. Cluster ions were efficiently generated by ionization of phenol followed by a jet expansion and were mass-selectively stored by the radio frequency ion trap method, which allows us to observe infrared multiphoton dissociation yield spectra of size-selected cluster ions. For [PhOH−(H2O)n]+, the OH stretching vibrations of the water moieties strongly suggested that the n ≥ 3 cluster ions exhibit the proton-transferred form, [PhO−H3O+(H2O)n-1], while the n = 1 and 2 ions are of the nontransferred form, [PhOH+−(H2O)n]. As for (PhOH)2+, the infrared spectra indicate that the dimer ion is characterized as the open form, in which the phenol ion acts as a proton donor and the neutral phenol as an acceptor through their single hydrogen bond. The similar open form is also foun...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.