Abstract

A systematic study of the hole transport and electrical properties in blue-emitting polymers as poly(9,9-dioctylfluorene) (PFO) has been performed. We show that the temperature dependent and thickness dependent current density versus voltage characteristics of PFO hole-only devices can be accurately described using our recently introduced improved mobility model based on both the Arrhenius temperature dependence and non-Arrhenius temperature dependence. Within the improved model, the mobility depends on three important physical quantities: temperature, carrier density, and electric field. For the polymer studied, we find the width of the density of states σ=0.115 eV and the lattice constant a=1.2 nm. Furthermore, we show that the boundary carrier density has an important effect on the current density versus voltage characteristics. Too large or too small values of the boundary carrier density lead to incorrect current density versus voltage characteristics. The numerically calculated carrier density is a decreasing function of distance from the interface. The numerically calculated electric field is an increasing function of distance. Both the maximum of carrier density and minimum of electric field appear near the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call