Abstract
High-osmolarity glycerol (HOG) pathway required for yeast osmoregulation relies upon the mitogen-activated protein kinase (MAPK) Hog1 cascade that comprise the MAPKKKs Ssk2/Ssk22 and Ste11 converging on the MAPKK Pbs2. Here we show a Hog1 cascade with the unique MAPKKK Ssk2 acting in Beauveria bassiana. Hypersensitivity to high osmolarity and high resistance to fludioxonil fungicide appeared in Δssk2, Δpbs2 and Δhog1 mutants whereas the two hallmark phenotypes were reversed in Δste11. Increased sensitivity to heat shock and decreased sensitivity to cell wall perturbation also occurred in the three mutants but not in Δste11 although antioxidant phenotypes were different in all deletion mutants. Intriguingly, signals of Hog1 phosphorylation induced by osmotic, oxidative and thermal cues were present in Δste11 but absent in Δssk2 and Δpbs2. Moreover, vegetative growth on minimal media with different carbon/nitrogen sources was much more suppressed in Δste11 and Δssk2 than in Δpbs2 and Δhog1 although all mutants suffered similar, but severe, conidiation defects on a standard medium. Normal host infection was abolished in Δste11 while virulence was differentially attenuated in other mutants. Our findings exclude Ste11 from the Hog1 cascade that regulates multiple stress responses and environmental adaptation of B. bassiana and perhaps other filamentous fungi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.