Abstract
Histones and transcription factors are regulated by a number of post-translational modifications that in turn regulate the transcriptional activity of genes. These modifications occur in large, multisubunit complexes. We have reported previously that mSin3A can recruit O-GlcNAc transferase (OGT) along with histone deacetylase into such a corepressor complex. This physical association allows OGT to act cooperatively with histone deacetylation in gene repression by catalyzing the O-GlcNAc modification on specific transcription factors to inhibit their activity. For rapid, reversible gene regulation, the enzymes responsible for the converse reactions must be present. Here, we report that O-GlcNAcase, which is responsible for the removal of O-GlcNAc additions on nuclear and cytosolic proteins, possesses intrinsic histone acetyltransferase (HAT) activity in vitro. Free as well as reconstituted nucleosomal histones are substrates of this bifunctional enzyme. This protein, now termed NCOAT (nuclear cytoplasmic O-GlcNAcase and acetyltransferase) has a typical HAT domain that has both active and inactive states. This finding demonstrates that NCOAT may be regulated to reduce the state of glycosylation of transcriptional activators while increasing the acetylation of histones to allow for the concerted activation of eukaryotic gene transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.