Abstract

Some lactic acid bacteria (LAB) strains isolated from alcoholic beverages are able to produce exopolysaccharides (EPS). The present work focuses on the physico-chemical characterization of the heteropolysaccharides (HePS) produced by Liquorilactobacillus sicerae CUPV261T (formerly known as Lactobacillus sicerae) and Secundilactobacillus collinoides CUPV237 (formerly known as Lactobacillus collinoides) strains isolated from cider. Genome sequencing and assembly enabled the identification of at least four putative HePS gene clusters in each strain, which correlated with the ability of both strains to secrete EPS. The crude EPS preparation from CUPV261T contained glucose, galactose and rhamnose, and that of CUPV237 was composed of glucose, galactose and N-acetylglucosamine. Both EPS were mixtures of HePS of different composition, with two major soluble components of average molecular weights (Mw) in the range of 106 and 104 g.mol−1. These HePS were resistant to gastric stress conditions in an in vitro model, and they significantly reduced zebrafish larvae mortality in an in vivo model of inflammatory bowel disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call