Abstract
The heterokaryotic and vegetative diploid phases of Magnaporthe grisea, a fungal pathogen of grasses, have been characterized. Prototrophic heterokaryons form when complementary auxotrophs are paired on minimal medium. Hyphal tip cells and conidia (vegetative spores) taken from these heterokaryons are auxotrophs with phenotypes identical to one or the other of the parents. M. grisea heterokaryons thus resemble those of other fungi that have completely septate hyphae with a single nucleus per cell. Heterokaryons have been utilized for complementation and dominance testing of mutations that affect nutritional characteristics of the fungus. Heterokaryons growing on minimal medium spontaneously give rise to fast-growing sectors that have the genetic properties expected of unstable heterozygous diploids. In fast-growing sectors, most hyphal tip cells are unstable prototrophs. The conidia collected from fast-growing sectors include stable and unstable prototrophs, as well as auxotrophs that exhibit a wide range of phenotypes, including many recombinant classes. Genetic linkage in meiosis has been detected between two auxotrophic mutations that recombine in vegetatively growing unstable diploids. The appearance of recombinants suggests that homologous recombination occurs during vegetative growth of M. grisea. No interstrain barriers to heterokaryosis and diploid formation have been detected. The mating type of the strains that are paired does not influence the formation of heterokaryons or diploids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.