Abstract

A brief (<4 s) period of neural activation evokes a stereotypical sequence of vascular and metabolic events to create the hemodynamic response function (HRF) measured using functional magnetic resonance imaging (fMRI). Linear analysis of fMRI data requires that the HRF be treated as an impulse response, so the character and temporal stability of the HRF are critical issues. Here, a simple audiovisual stimulus combined with a fast-paced task was used to evoke a strong HRF across a majority, ∼77%, of cortex during a single scanning session. High spatiotemporal resolution (2-mm voxels, 1.25-s acquisition time) was used to focus HRF measurements specifically on the gray matter for whole brain. The majority of activated cortex responds with positive HRFs, while ∼27% responds with negative (inverted) HRFs. Spatial patterns of the HRF response amplitudes were found to be similar across subjects. Timing of the initial positive lobe of the HRF was relatively stable across the cortical surface with a mean of 6.1 ± 0.6 s across subjects, yet small but significant timing variations were also evident in specific regions of cortex. The results provide guidance for linear analysis of fMRI data. More importantly, this method provides a means to quantify neurovascular function across most of the brain, with potential clinical utility for the diagnosis of brain pathologies such as traumatic brain injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call