Abstract

The heme iron in human adult hemoglobin modified by both pyridoxal-5′-phosphate and glutaraldehyde was characterized by Mössbauer spectroscopy and compared with non-modified hemoglobin. Mössbauer spectra of the samples were measured at 87 and 295 K (1yophilized form) and at 87 K (frozen solution). The values of quadrupole splitting for the oxy-form of modified hemoglobin were found to be lower than those of the oxy-form of hemoglobin without modifications in lyophilized form and frozen solution, respectively. On the other hand, the values of quadrupole splitting for the deoxy-form of modified and non-modified hemoglobins in frozen solution were the same. The Mössbauer spectra of the oxy-form of modified hemoglobin were also analyzed in terms of the heme iron non-equivalence in α- and β-subunits of tetramer. The differences of the tendencies of temperature dependencies of quadrupole splitting for the oxy-form of modified and non-modified hemoglobins in lyophilized form were shown. These results indicated that the heme iron electronic structure and stereochemistry were changed in the oxy-form of pyridoxylated hemoglobin cross-linked by glutaraldehyde.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.