Abstract

Natural hosts of simian immunodeficiency virus (SIV), such as the African green monkey (AGM), possess the ability to avoid acquired immune deficiency syndrome (AIDS) despite lifelong infection. The underlying mechanisms are not completely understood. This study aimed to characterize the gut microbiome and metabolite profiles of different nonhuman primates (NHPs) to provide potential insight into AIDS resistance. Fresh feces from Cynomolgus macaques (CMs), and Rhesus macaques (RMs), SIV- AGMs (AGM_N), and SIV+ AGMs (AGM_P) were collected and used for metagenomic sequencing and metabonomic analysis. Compared with CMs and RMs, significant decreases in the abundances of Streptococcus , Alistipes , Treponema , Bacteroides , and Methanobrevibacter ( P < 0.01), and significant increases in the abundances of Clostridium , Eubacterium , Blautia , Roseburia , Faecalibacterium , and Dialister ( P < 0.01) were detected in AGM_N. Compared with AGM_N, a trend toward increased abundances of Streptococcus and Roseburia were found in AGM_P. The levels of metabolites involved in lipid metabolism and butanoate metabolism significantly differed among AGM_P, AGM_N and CM ( P < 0.05). Our data, for the first time, demonstrated distinguishing features in the abundances of butyrate-producing bacteria and lipid metabolism capacities between different NHP hosts of SIV infection. These findings may correlate with the different characteristics observed among these hosts in the maintenance of intestinal epithelial barrier integrity, regulation of inflammation, and provide insights into AIDS resistance in AGMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call