Abstract
Peroxiredoxins use a variety of thiols to rapidly reduce hydroperoxides and peroxynitrite. While the oxidation kinetics of peroxiredoxins have been studied in great detail, enzyme‐specific differences regarding peroxiredoxin reduction and the overall rate‐limiting step under physiological conditions often remain to be deciphered. The 1‐Cys peroxiredoxin 5 homolog PfAOP from the malaria parasite Plasmodium falciparum is an established model enzyme for glutathione/glutaredoxin‐dependent peroxiredoxins. Here, we reconstituted the catalytic cycle of PfAOP in vitro and analyzed the reaction between oxidized PfAOP and reduced glutathione (GSH) using molecular docking and stopped‐flow measurements. Molecular docking revealed that oxidized PfAOP has to adopt a locally unfolded conformation to react with GSH. Furthermore, we determined a second‐order rate constant of 6 × 105 M−1 s−1 at 25°C and thermodynamic activation parameters ΔH ‡, ΔS ‡, and ΔG ‡ of 39.8 kJ/mol, −0.8 J/mol, and 40.0 kJ/mol, respectively. The gain‐of‐function mutant PfAOPL109M had almost identical reaction parameters. Taking into account physiological hydroperoxide and GSH concentrations, we suggest (a) that the reaction between oxidized PfAOP and GSH might be even faster than the formation of the sulfenic acid in vivo, and (b) that conformational changes are likely rate limiting for PfAOP catalysis. In summary, we characterized and quantified the reaction between GSH and the model enzyme PfAOP, thus providing detailed insights regarding the reactivity of its sulfenic acid and the versatile chemistry of peroxiredoxins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Protein science : a publication of the Protein Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.