Abstract

Grade assessment of steel is generally performed via the metallographic method, which is timeconsuming and is not able to provide the elemental distribution information. In this paper, we present a method to measure the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy (LIBS). The measurement is performed in two basic steps: steel samples are polished using metallographic sand paper and the Al2O3 inclusion number and size distribution in a marked area are observed using scanning electron microscope/energy dispersive X-ray spectroscopy (SEM/EDS) for further LIBS scanning analysis. The threshold intensity that distinguishes soluble aluminum and insoluble aluminum inclusions is determined using LIBS combined with the SEM/EDS statistical data. Carbon steel (the sample number is S9256) and bearing steel (the sample number is GCr15) are analyzed in scanning mode, and the number of Al2O3 inclusions in different size ranges is obtained from the statistical information derived from the Al2O3 size calibration curve. According to heavy and thin series for globular oxide inclusions grade assessment, the method we propose is comparable to the traditional metallographic method in terms of accuracy; however, the process is simplified and the measurement speed is significantly improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call