Abstract

BackgroundPyropia haitanensis is an economically important mariculture crop in China and is also valuable in life science research. However, the lack of genetic information of this organism hinders the understanding of the molecular mechanisms of specific traits. Thus, high-throughput sequencing is needed to generate a number of transcriptome sequences to be used for gene discovery and molecular marker development.ResultsIn this study, high-throughput sequencing was used to analyze the global transcriptome of P. haitanensis. Approximately 103 million 90 bp paired-end reads were generated using an Illumina HiSeq 2000. De novo assembly with paired-end information yielded 24,575 unigenes with an average length of 645 bp. Based on sequence similarity searches with known proteins, a total of 16,377 (66.64%) genes were identified. Of these annotated unigenes, 5,471 and 9,168 unigenes were assigned to gene ontology and clusters of orthologous groups, respectively. Searching against the KEGG database indicated that 12,167 (49.51%) unigenes mapped to 124 KEGG pathways. Among the carbon fixation pathways, almost all the essential genes related to the C3- and C4-pathways for P. haitanensis were discovered. Significantly different expression levels of three key genes (Rubisco, PEPC and PEPCK) in different lifecycle stages of P. haitanensis indicated that the carbon fixation pathway in the conchocelis and thallus were different, and the C4-like pathway might play important roles in the conchocelis stage. In addition, 2,727 cSSRs loci were identified in the unigenes. Among them, trinucleotide SSRs were the dominant repeat motif (87.17%, 2,377) and GCC/CCG motifs were the most common repeats (60.07%, 1,638). High quality primers to 824 loci were designed and 100 primer pairs were randomly evaluated in six strains of P. haitanensis. Eighty-seven primer pairs successfully yielded amplicons.ConclusionThis study generated a large number of putative P. haitanensis transcript sequences, which can be used for novel gene discovery and gene expression profiling analyses under different physiological conditions. A number of the cSSR markers identified can be used for molecular markers and will facilitate marker assisted selection in P. haitanensis breeding. These sequences and markers will provide valuable resources for further P. haitanensis studies.

Highlights

  • Pyropia haitanensis is an economically important mariculture crop in China and is valuable in life science research

  • All 10 primer pairs resulted in a band of the expected size, and the identity of all ten PCR products were confirmed by Sanger sequencing

  • Among the successful primer pairs, 62 resulting amplicons were of the expected size. These results indicated that the assembled unigenes were of high quality and that most of the cDNA-derived SSR (cSSR) markers developed in this study could be used for a range of future studies in P. haitanensis

Read more

Summary

Introduction

Pyropia haitanensis is an economically important mariculture crop in China and is valuable in life science research. Pyropia differ from most terrestrial plants in many aspects of their biology, such as their unique heteromorphic digenetic life cycle, their special pathway for carbon assimilation in photosynthesis, their genetic chimera of blades, their ability to accumulate iodine, their original composition of their cell walls, and their associated cell wall synthesis pathways [3]. These specific characteristics present opportunities for new discoveries in Pyropia. The limited genomic sequence resources have hampered studies to elucidate the molecular mechanisms of specific traits and understand the complex mechanisms of stress tolerance in P. haitanensis

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call