Abstract

BackgroundPeru holds the fourth highest burden of tuberculosis in the Americas. Despite an apparently well-functioning DOTS control program, the prevalence of multidrug resistant tuberculosis (MDR-TB) continues to increase. To worsen this situation, cases of extensively drug resistance tuberculosis (XDR-TB) have been detected. Little information exists about the genetic diversity of drug-susceptible vs. MDR-TB and XDR-TB.MethodsCryopreserved samples of XDR strains from 2007 to 2009 (second semester), were identified and collected. Starting from 227 frozen samples, a total of 142 XDR-TB strains of Mycobacterium tuberculosis complex (MTBC; 1 isolate per patient) were retained for this study. Each strain DNA was analyzed by spoligotyping and the 15-loci Mycobacterial Interspersed Repetitive Unit (MIRU-15).ResultsAmong the 142 isolates analyzed, only 2 samples (1.41%) could not be matched to any lineage. The most prevalent sublineage was Haarlem (43.66%), followed by T (27.46%), LAM (16.2%), Beijing (9.15%), and X clade (1.41%). Spoligotype analysis identified clustering for 128/142 (90.1%) isolates vs. 49/142 (34.5%) with MIRUs. Of the samples, 90.85% belonged to retreated patients. The drug resistant profile demonstrated that 62.67% showed resistance to injectable drugs capreomycin (CAP) and kanamycin (KAN) vs. 15.5% to CAP alone and 21.8% to KAN alone. The SIT219/T1 and SIT50/H3 were the most prevalent patterns in our study. The spoligoforest analysis showed that SIT53/T1 was at the origin of many of the T lineage strains as well as a big proportion of Haarlem lineage strains (SIT50/H3, followed by SIT47/H1, SIT49/H3, and SIT2375/H1), as opposed to the SIT1/Beijing strains that did not appear to evolve into minor Beijing sublineages among the XDR-TB strains.ConclusionIn contrast with other Latin-American countries where LAM sublineage is the most predominant, we found the Haarlem to be the most common followed by T sublineage among the XDR-TB strains.

Highlights

  • With almost 9 million new cases in 2011 and 1.4 million deaths, tuberculosis (TB) caused by Mycobacterium tuberculosis ranks as the second leading cause of death from an infectious disease in the world [1]

  • Instituto Nacional de Salud (INS) isolated, identified, and cryo-preserved all MDR and XDR strains in a Mycobacterium tuberculosis complex (MTBC) strain bank, which were duly confirmed for their drug-resistance using drug-susceptibility testing (DST) for first and second line antituberculosis drugs by the agar proportion method [9]

  • Starting from 227 frozen samples in the INS strain-bank, a total of 142 XDR-TB strains of Mycobacterium tuberculosis complex (MTBC; 1 isolate per patient) representing 62.5% of the sample were retained for this study; 85 strains were not included in the study for a diversity of reasons

Read more

Summary

Introduction

With almost 9 million new cases in 2011 and 1.4 million deaths, tuberculosis (TB) caused by Mycobacterium tuberculosis ranks as the second leading cause of death from an infectious disease in the world [1]. MDR-TB complicates management of patients due to increased pressure on public health systems and cost of the treatment. It further aggravates the emergence of extensively drug-resistant TB (XDR-TB), defined as MDR-TB plus resistance to a fluoroquinolone and at least one of the three second-line injectable drugs (Amikacin, Kanamycin or Capreomycin). Despite an apparently well-functioning DOTS control program, the prevalence of multidrug resistant tuberculosis (MDR-TB) continues to increase. To worsen this situation, cases of extensively drug resistance tuberculosis (XDR-TB) have been detected. Starting from 227 frozen samples, a total of 142 XDR-TB strains of Mycobacterium tuberculosis complex (MTBC; 1 isolate per patient) were retained for this study. The SIT219/T1 and SIT50/H3 were the most prevalent

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.