Abstract

The G-protein-mediated coupling of a glucagon receptor to ATP-dependent K channels--KATP--has been studied in insulin-secreting cells using the patch clamp technique. In excised outside-out patches, KATP channel activity was inhibited by low concentrations of glucagon (IC50 = 2.4 nM); the inhibitory effect vanished at concentrations greater than 50 nM. In cell-attached patches, inhibition by bath-applied glucagon was seen most often, although stimulation was observed in a few cases. A dual action of the hormone is proposed to resolve these apparently divergent results. In excised inside-out patches, KATP channel activity was inhibited by addition of beta gamma subunits purified from either erythrocyte or retina (IC50 = 50 pM and 1 nM, respectively). Subsequent exposure of the patch to alpha i or alpha o reversed this effect. In excised inside-out patches, increasing Mg2+ in the bath stimulated the channel activity between 0 and 0.5 nM, but blocked it at higher concentrations (IC50 = 2.55 mM). In most cases (70%), GTP had a stimulatory effect at concentrations up to 100 microns. However, in three cases, similar GTP levels had clear inhibitory effects. In excised inside-out patches, cholera toxin (CTX) caused channel inhibition. Although the effect could not be reversed by removal of the toxin, the activity was restored by subsequent addition of purified alpha i or alpha o. These results are compatible with a model whereby channel inhibition by activated Gs-coupled receptors occurs, at least in part, via association of the beta gamma subunits of Gs with alpha i/alpha o subunits and deactivation of the alpha i/alpha o-dependent stimulatory pathway. On the basis of this hypothesis, a model is developed to describe the effects of G proteins on the KATP channel, as well as to account for the concentration-dependent stimulation and inhibition of KATP channel by Mg2+. An interpretation of the ability of glucagon to potentiate, but not initiate, insulin release is also given in terms of this model and the effects of ATP on KATP channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.