Abstract

Recently, several studies conducted by automotive industry revealed the tremendous advantages of Advanced High Strength Steels (AHSS). TRansformation Induced Plasticity (TRIP) steel is one of the typical representative of AHSS. This kind of materials exhibits high strength as well as high formability. Analyzing the crack behaviour in TRIP steels is a challenging task due to the microstructure level inhomogeneities between the different phases (Ferrite, Bainite, Austenite, Martensite) that constitute these materials. This paper aims at investigating the fracture resistance of TRIP steels. For this purpose, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. Uniaxial tensile tests on TRIP 800 sheet notched specimens were also conducted and tensile properties and R-curves (Resistance curves) were determined. The comparison between simulation and experimental results leads us to the conclusion that the method using microstructure-based representative volume element (RVE) captures well enough the complex behavior of TRIP steels. The effect of phase transformation, which occurs during the deformation process, on the toughness is observed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call