Abstract
Spinal cord injury (SCI) is a serious central nervous system disease with no effective treatment strategy presently due to its complex pathogenic mechanism. N6-methyladenosine (m6A) methylation modification plays an important role in diverse physiological and pathological processes. However, our understanding of the potential mechanisms of messenger RNA (mRNA) and long non-coding RNAs (lncRNA) m6A methylation in SCI is currently limited. Here, comprehensive m6A profiles and gene expression patterns of mRNAs and lncRNAs in spinal cord tissues after SCI were identified using microarray analysis of immunoprecipitated methylated RNAs. A total of 3745 mRNAs (2343 hypermethylated and 1402 hypomethylated) and 738 lncRNAs (488 hypermethylated and 250 hypomethylated) were differentially methylated with m6A modifications in the SCI and sham rats. Functional analysis revealed that differentially m6A-modified mRNAs were mainly involved in immune inflammatory response, nervous system development, and focal adhesion pathway. In contrast, differentially m6A-modified lncRNAs were mainly related to antigen processing and presentation, the apoptotic process, and the mitogen-activated protein kinases (MAPKs) signaling pathway. In addition, combined analysis of m6A methylation and RNA expression results revealed that 1636 hypermethylated mRNAs and 262 hypermethylated lncRNAs were up-regulated, and 1571 hypomethylated mRNAs and 204 lncRNAs were down-regulated. Furthermore, we validated the altered levels of m6A methylation and RNA expression of five mRNAs (CD68, Gpnmb, Lilrb4, Lamp5, and Snap25) and five lncRNAs (XR_360518, uc.393 + , NR_131064, uc.280 - , and XR_597251) using MeRIP-qPCR and qRT-PCR. This study expands our understanding of the molecular mechanisms underlying m6A modification in SCI and provides novel insights to promote functional recovery after SCI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.