Abstract

We measured the excess carrier lifetimes in as-grown and electron irradiated p-type 4H-SiC epitaxial layers with the microwave photoconductivity decay (-PCD) method. The carrier lifetime becomes longer with excitation density for the as-grown epilayer. This dependence suggests that e ≥h for the dominant recombination center, where e andh are capture cross sections for electrons and holes, respectively. In contrast, the carrier lifetime does not depend on the excitation density for the sample irradiated with electrons at an energy of 160 keV and a dose of 1×1017 cm-2. This may be due to the fact that recombination centers with e <<h were introduced by the electron irradiation or due to the fact that the acceptor concentration was decreased significantly by the irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.