Abstract

The virulent phage ST32 that infects the Escherichia coli strain ST130 was isolated from a wastewater sample in China and analyzed. Morphological observations showed that phage ST32 belongs to the Myoviridae family, as it has an icosahedral capsid and long contractile tail. Host range analysis showed that it exhibits a broad range of hosts including non-pathogenic and pathogenic E. coli strains. Interestingly, phage ST32 had a much larger burst size when amplified at 20 °C as compared to 30 °C or 37 °C. Its double-stranded DNA genome was sequenced and found to contain 53,092 bp with a GC content of 44.14%. Seventy-nine open reading frames (ORFs) were identified and annotated as well as a tRNA-Arg. Only nineteen ORFs were assigned putative functions. A phylogenetic tree using the large terminase subunit revealed a close relatedness with four unclassified Myoviridae phages. A comparative genomic analysis of these phages showed that the Enterobacteria phage phiEcoM-GJ1 is the closest relative to ST32 and shares the same new branch in the phylogenetic tree. Still, these two phages share only 47 of 79 ORFs with more than 90% identity. Phage ST32 has unique characteristics that make it a potential biological control agent under specific conditions.

Highlights

  • Pathogenic Escherichia coli (E. coli) is a common zoonotic agent that poses a significant threat to public health and safety

  • ST32which was isolated from wastewater using the pathogenic host can beIn separated into three distinct groups, is consistent with their three-branch division in the Morphological and genomic characterization showed that phage

  • Morphological and genomic characterization showed that phage ST32 belongs to the Myoviridae family

Read more

Summary

Introduction

Pathogenic Escherichia coli (E. coli) is a common zoonotic agent that poses a significant threat to public health and safety. STEC infection can result in diseases such as diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome (HUS) in humans and animals. These diseases are subjected to various pharmaceutical treatments including antibiotics, such as ampicillin, streptomycin, sulfonamides, and oxytetracycline [4,5]. It is well-known that the use of antibiotics can lead to the spread of antibiotic-resistant bacteria in the environment, which poses a risk to human health [6,7,8]. This bacterial species has a great capacity to accumulate antibiotic resistance genes, mostly through horizontal gene transfer [10,11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.