Abstract

This work describes the numerical implementation of a formulation for material forces within an electro-mechanically coupled finite element framework for electro-active polymers (EAP), along with a method to simulate and predict the fatigue life of EAP by material forces. The finite element framework is based on the theory of finite deformations, and quasi-incompressibility of the material is considered, where a Q1P0 finite element framework is used to treat the volumetric locking. Path dependence of the implemented material forces is studied. Additionally, the effect of the applied electric field on the crack behaviour is analyzed. Next, the relation between material forces and the energy release rate is examined for EAP. Finally, the effect of an applied electric field on the fatigue life of the material is simulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.