Abstract

The pattern of endoproteolytic activities occurring during wheat (Triticum aestivum, cultivar Chinese Spring) grain development was investigated. Total endoprotease activity, assayed in solution with azocasein as a substrate, increased during the early stages of grain development to reach a maximum at 15 d postanthesis that was maintained until the grain was mature. Endoprotease activity was also assayed in gradient polyacrylamide gels co-polymerized with gelatin. The increase in endoproteolytic activity was due to the appearance of up to 18 endoproteolytic bands that were arbitrarily classified into five groups (A, B, C, D, and E). The presence of serine, aspartic, metallo, and, to a lesser extent, thiol proteases in developing wheat grains was demonstrated by the use of class-specific protease inhibitors. The appearance of the different classes of endoproteases during seed development was subject to temporal control; serine proteases were more abundant at early stages and aspartic and metallo proteases were more abundant at later stages. At intermediate stages of development (15-20 d postanthesis), most of the endoproteases were localized in the aleurone, testa, and embryo. The content of acidic thiol proteases was low in the developing starchy endosperm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.