Abstract

Increased membrane unsaturation has been associated with shorter longevity due to higher sensitivity to lipid peroxidation (LP) leading to enhanced mitochondrial dysfunction and ROS overproduction. However, the role of LP during aging has been put in doubt along with the participation of electron leak at the electron transport chain (ETC) in ROS generation in aged organisms. Thus, to test these hypothesis and gain further information about how minimizing LP preserves ETC function during aging, we studied the effects of α-linolenic acid (C18:3) on in situ mitochondrial ETC function, ROS production and viability of chronologically aged cells of S. cerevisiae, whose membranes are intrinsically resistant to LP due to the lack of PUFA. Increased sensitivity to LP was observed in cells cultured with C18:3 at 6 days of aging. This was associated with higher viability loss, dissipated membrane potential, impaired respiration and increased ROS generation, being these effects more evident at 28 days. However, at this point, lower sensitivity to LP was observed without changes in the membrane content of C18:3, suggesting the activation of a mechanism counteracting LP. The cells without C18:3 display better viability and mitochondrial functionality with lower ROS generation even at 28 days of aging and this was attributed to full preservation of complex III activity. These results indicate that the presence of PUFA in membranes enhances ETC dysfunction and electron leak and suggest that complex III is crucial to preserve membrane potential and to maintain a low rate of ROS production during aging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.