Abstract
A preliminary study from our laboratory found retinol (vitamin A alcohol) to have in vitro activity against Plasmodium falciparum at concentrations close to those in normal human serum (1–3 μM). To characterize the antimalarial potential of retinol in more detail, the 3D7 and K1 laboratory strains of P. falciparum were maintained in continuous culture and [ 3H]hypoxanthine incorporation and microscopy were used to assess the effect of retinol against asexual stages of the parasite life-cycle. Losses of retinol and retinol-associated hemolysis were also quantified in the in vitro culture system. There were retinol losses of >50% but no hemolysis was observed with added retinol concentrations up to 100 μM. All stages of parasite development showed comparable sensitivity to retinol including merozoite invasion (range of mean IC 50 values 10.1–21.4 μM after adjustment for losses). Retinol pre-treatment of uninfected RBC did not inhibit merozoite invasion. Retinol treatment was associated with increased vacuolization within the parasite food vacuole and evidence of parasite membrane rupture. These appearances were similar to those seen with quinoline and artemisinin compounds. Although these data do not support a role for acute retinol supplementation in the treatment of falciparum malaria, they add to knowledge regarding potential antimalarial therapies and justify assessment of more potent synthetic retinoids and their metabolites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.