Abstract

A stable plasmid DNA, pMWJEAT, was constructed by using full-length Japanese encephalitis virus (JEV) cDNA isolated from the wild-type strain JEV AT31. Recombinant JEV was obtained by synthetic RNA transfection into Vero cells and designated rAT virus. JEV rAT exhibited similar large-plaque morphology and antigenicity to the parental AT31 strain. Mutant clone pMWJEAT-E138K, containing a single Glu-to-Lys mutation at aa 138 of the envelope (E) protein, was also constructed to analyse the mechanisms of viral attenuation arising from this mutation. Recombinant JEV rAT-E138K was also recovered and displayed a smaller-plaque morphology and lower neurovirulence and neuroinvasiveness than either AT31 virus or rAT virus. JEV rAT-E138K exhibited greater plaque formation than rAT virus in virus-cell interactions under acidic conditions. Heparin or heparinase III treatment inhibited binding to Vero cells more efficiently for JEV rAT-E138K than for rAT virus. Inhibition of virus-cell interactions by using wheatgerm agglutinin was more effective for JEV rAT than for rAT-E138K on Vero cells. About 20 % of macropinoendocytosis of JEV rAT for Vero cells was inhibited by cytochalasin D treatment, but no such inhibition occurred for rAT-E138K virus. Furthermore, JEV rAT was predominantly secreted from infected cells, whereas rAT-E138K was more likely to be retained in infected cells. This study demonstrates clearly that a single Glu-to-Lys mutation at aa 138 of the envelope protein affects multiple steps of the viral life cycle. These multiple changes may induce substantial attenuation of JEV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call