Abstract

Understanding and characterizing the molecular background of the maintenance of genomic integrity might be a major factor in comprehending the exceptional ability of the malaria parasite, Plasmodium falciparum to adapt at a fast pace to antimalarials. A balanced nucleotide pool is an essential factor for high-fidelity replication. The lack of detailed studies on deoxynucleotide-triphosphate (dNTP) pools in various intraerythrocytic stages of Plasmodium falciparum motivated our present study. Here, we focused on the building blocks of DNA and utilized an EvaGreen-based dNTP incorporation assay to successfully measure the temporal dynamics of dNTPs in every intraerythrocytic stage and in drug-treated trophozoites. Our findings show that the ratio of dNTPs in the ring-stage parasites significantly differs from the more mature trophozoite and schizont stages. We were also able to detect dGTP levels that have never been shown before and found it to be the least abundant dNTP in all stages. Treatment with WR99210, a TS-DHFR inhibitor drug, affected not only dTTP, but also dGTP levels, despite its presumed selective action on pyrimidine biosynthesis. Results from our studies might assist in a better understanding of genome integrity mechanisms and may potentially lead to novel drug related aspects involving purine and pyrimidine metabolic targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.